Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Si-Jia Xue,* An Chai, Yan-Lin Guo and Qing-Dong Wang

Department of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China

Correspondence e-mail: sjxue@shnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.076$
$w R$ factor $=0.172$
Data-to-parameter ratio $=10.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-5-tert-Butyl-1-cinnamoylthiobiuret

The title compound, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, is one of the thiourea herbicides in which 1-tert-butylurea replaces 4,6-disubstituted pyrimidine. The crystal structure reveals intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds that form sixmembered rings, whereas intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect molecules along the b axis.

Comment

Thiourea compounds display high biological activity as herbicides with low toxicity and low residue content. They are used extensively as pesticides, fungicides and regulating agents of plant growth in the agrochemical industry (Pu et al., 1994; McCourt et al., 2005). Thus, thiourea herbicides are a subject of intensive research and many novel structural thiourea herbicides have appeared in the literature (Ehrenfreund 1988; Takematsu et al., 1988; Kehne et al., 1991). We modified the synthesis of (I) according to Reeves et al. (1981), using 1-tertbutylurea instead of 4,6 -disubstituted pyrimidine. The key feature of this thiourea herbicide is the dicarbonylthiourea, which might provide an opportunity for the study of the cooperative effect of combining these biologically active components in a single molecule. We report here the crystal structure of the title compound, (I) (Fig. 1).

Received 26 May 2006
Accepted 14 June 2006

There are two intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming six-membered rings. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding connects molecules along the b axis (Fig. 2 and Table 2).

Experimental

(E)-3-Phenylprop-2-enoyl isothiocyanate was synthesized according to the reported methods of Jiang et al. (2000) and Wang et al. (2001). The synthetic routes are indicated in the scheme (see Comment; PEG-400 is polyethylene glycol 400). Reaction of the isothiocyanate
derivative with 1-tert-butylurea was successfully carried out using acetonitrile as solvent. To a stirred solution of 3-phenylprop-2-enoyl isothiocyanate $(1.89 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$ was slowly added a solution of 1-tert-butylurea $(1.16 \mathrm{~g}, 10 \mathrm{mmol})$ in dry acetonitrile (10 ml) over a period of 30 min at room temperature under nitrogen. The mixture was refluxed and stirred for 2 h . After being cooled to room temperature, a yellow solid precipitated from a redorange solution immersed in the water bath of an ultrasonic cleaner at 333 K for $25-30 \mathrm{~min}$. The residue was obtained after filtration and washing with water, and was crystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ (5:1 v / v), giving (I) as yellow crystals in 68% yield.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=305.39$
Orthorhombic, $P b c a$
$a=7.898(2) \AA$
$b=11.910(5) \AA$
$c=35.170(16) \AA$
$V=3309(2) \AA^{3}$

$Z=8$

$D_{x}=1.226 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, yellow
$0.35 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.932, T_{\text {max }}=0.990$

Refinement

Refinement on F^{2}

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.051 P)^{2}\right.$
$+4.2027 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Extinction correction: SHELXL97
Extinction coefficient: 0.0009 (7)

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

S1-C10	$1.659(4)$	$\mathrm{N} 1-\mathrm{C} 10$	$1.392(5)$
O1-C9	$1.222(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.341(5)$
O2-C11	$1.222(4)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.429(5)$
N1-C9	$1.382(5)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.319(5)$
O1-C9-N1	$123.0(4)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 1$	$128.0(3)$
N2-C10-N1	$114.7(3)$	$\mathrm{N} 3-\mathrm{C} 11-\mathrm{N} 2$	$116.9(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1$	$0.97(4)$	$2.21(4)$	$3.058(4)$	$146(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.90(4)$	$1.92(4)$	$2.634(4)$	$135(3)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.97(4)$	$1.86(5)$	$2.820(4)$	$176(4)$

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.
H atoms were located in difference maps and refined freely [$\mathrm{C}-$ $\mathrm{H}=0.83(6)-1.09(5) \AA]$.

Figure 1
The structure of the title compound, showing the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work is sponsored by National Key Technologies R\&D Programs (No. 2004BA-308A22-8).

References

Bruker (1998). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Ehrenfreund, J. (1988). HU Patent A01N47/30, 46839.
Jiang, M. G., Yang, H., Cheng, R. D., Liu, Y. P., Bo, L. Y., Lou, Y. L., Zhang, S. M. \& Zhang, D. Y. (2000). J. Nanjing Agric. Univ. 23, 97-100.

Kehne, H., Willms, L., Ort, O., Bauer, K. \& Bieringer, H. (1991). DE Patent A01N47/36, 4000503.
McCourt, J. A., Pang, S. S., Guddat, L. W. \& Duggleby, R. G. (2005). Biochemistry, 44, 2330-2338.
Pu, Q., Sun, D. Q. \& Zen, R. S. (1994). Chin. J. Appl. Chem. 11, 101-103.
Reeves, W. P., Simmons, A. J., Rudis, J. A. \& Bothwell, T. C. (1981). Synth. Coтmии. 11, 781-785.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Takematsu, T. \& Akinori, S. (1988). JP Patent A01N47/30, 63211260.
Wang, Z. N. \& Xue, S. J. (2001). Chin. J. Org. Chem. 21, 174-177.

[^0]: © 2006 International Union of Crystallography All rights reserved

